
(a) (b) (c)
图9 矢量图
根据回路阻抗

当Q值变化时,则通频带
变大或缩小。Q值降低,通频带增大;Q值增大,通频带缩小。
对晶闸管中频电源并联逆变器,必须运行在超前角30°左右,因此,负载跟串联振荡回路一样也为容性,但工作频率ω应大于负载振荡回路的固有频率ω0。
对中频机组供电情况,为有效利用电源装置的容量。一般希望运行在负载的谐振频率接近于机组的固有频率(固定频率),但由于在加热过程中负载参数随温度变化而改变,因此,需要通过不断改变电容器C值来调节负载谐振频率ω0和功率因数cos
。
4 负载在加热过程中的变化
中频感应加热负载在加热过程中的变化受多方面因素影响,反映在负载振荡回路中的参数变化相当复杂,详细分析是比较困难的。这里就实际运行中的几个典型参数变化情况作简要说明。
通过前面的分析可知,中频感应加热负载实际上应由感应器,被加热工件和补偿电容器三部分组成,如图7所示。被加热工件有磁性材料(如铁等)和非磁性材料(如铜等)之分。不同性质的工件对温度变化的反应是不一样的。对非磁性工件而言,其在加热过程中导磁率(μ=1)不变,则电感Ls也几乎不变,而电阻rs则随温度升高而增大。对磁性工件来说,加热过程中温度变化所引起的电参数变化非常复杂,图10示出了铁磁材料ρ和μ的温度变化曲线。由图10可知,在磁性变态点之前,电阻系数ρ和导磁率μ均在变化,一般称这种状态为冷态。当工件温度达到磁性变态点以上时,ρ和μ均趋于稳定,这种状态称为热态。冷态加热开始时,μ几乎不变,即Ls也几乎不变,此时电阻rs随ρ的上升而增大,当温度接近磁性变态点时,导磁率μ有明显下降,这不仅使Ls急剧减小,同时由于渗透深度的迅速增大,因此rs也减小。

图10 磁性材料ρ和μ温度变化曲线
在C和ω均为不变条件下,负载阻抗Z随温度的变化参见图11。

图11 负载阻抗温度变化曲线
由图11可知,冷态阻抗小,热态阻抗大,这就是晶闸管中频熔炼设备为什么热炉起动容易,冷炉起动困难的原因。
图11所示的负载阻抗变化规律,对我们分析负载电路特性非常有用。根据这种特性,我们可以在电源设计时采取措施,实现恒功率输出,还有频率自动跟踪,功率因数自动调节等。